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Solution 1:
Ahead of Time (AOT) Compilation
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Compile Java Source Direct to Native Code

• Traditional approach: Ahead of time, static compilation

• No interpreting bytecodes

• No analysis of hotspots

• No runtime compilation of code placing heavy load on CPUs

• Start at full speed, straight away

• This is the Graal native image approach

• Problem solved, right?
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Not So Fast

• AOT is, by definition, static

• And code is compiled before it is run

• The compiler has no knowledge of how the code will actually run

o Profile guided optimisation has been around for a long time and only helps partially
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Speculative Optimisation Example: 
Branch Analysis

int computeMagnitude(int value) {
  if (value > 9)
    bias = computeBias(value);
  else
    bias = 1;
  
  return Math.log10(bias + 99);
}

Profiling data shows that value (so far) has never been greater than 9
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Speculative Optimisation Example: 
Branch Analysis

Assume that, based on profiling, value will continue to be less than 10

int computeMagnitude(int value) {
  if (value > 9)
    uncommonTrap();  // Deoptimise
  
  return 2;  // Math.log10(100)
}
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When To Use AOT

• Ephemeral microservices

o Startup and warmup time is more important than overall speed

o Garbage collection is usually a non-issue

• Resource constrained services

o E.g. 2 vcore container

o JIT compilation will significantly reduce throughput during warmup
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Solution 2:
Store JIT Compilation Data
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Azul Prime ReadyNow

• Run the application until its warmed up

• Take a profile

o All currently loaded classes

o All currently initialised classes

o JIT profiling data

o Deoptimisations that occurred

o A copy of all compiled code

• Restart application

o Load and initialise all required classes

o Load code or compile methods

o All before main()
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Solution 3:
Decouple The JIT Compiler
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JIT Compilation Has Cost

• JIT is CPU intensive

o The work has to be done concurrently with the application workload

• Better optimisations deliver better performance (throughput)

o But require more time, compute power and memory

• This is fine if we have a powerful machine

o E.g. 64 vcores and 64GB RAM

• Less powerful environments can be problematic

o E.g. 2vcore container with 2GB RAM

o Heavily optimised JIT can become prohibitive by degrading throughput

o Even resul in OOM errors

• Often we end up with a compromise
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Speed and CPU Usage Over Time

• 2 Vcore container
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Speed and CPU Usage Over Time
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And Made It A Cloud-Based Resource

Cloud Native Compiler
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Isn't This Just Shifting The Cost?

• Well, Yes…

• But we are shifting it to a much more efficient place

• When a JVM optimizes locally, it must carry dedicated resources to do so

• When outsourced to a Cloud Native Compiler

o The resources are shared and reused

o The resources can be elastic

• Compiled code can be cached

o The JIT now effectively has a memory across runs
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Solution 4:
Save The Whole Application State
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Co-ordinated Resume In Userspace

• Linux project

• Basic idea

o Freeze a running application

- Pause program counter

o Create a snapshot of the applications state (as a set of files)

o At some later point, use those files to restart the application from the same point

- Potentially, on a different physical machine
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Co-ordinated Restore at Checkpoint (CRaC)

• Let's make the application aware it is being checkpointed and restored

• CRaC also enforces more restrictions on a checkpointed application

o No open files or sockets

o Checkpoint will be aborted if any are found

Application running Application running

Aware of checkpoint
being created

Aware of restore
happening
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Using CRaC API

• Resource objects need to be registered with a Context so that they can receive notifications

• There is a global Context accessible via the static getGlobalContext() method of the Core class

<<Interface>>
Resource

beforeCheckpoint()
afterRestore()

Core

getGlobalContext()

<<Abstract>>
Context

register(Resource)
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Does It Work? POC Results
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Summary
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Solving The JVM Warmup Problem

• No one solution will fit all situations

• AOT is good for fast startup/small footprint in ephemeral services

• ReadyNow provides memory of JIT across runs

• Cloud Native Compiler offloads JIT workload

• CRaC restarts an application from a known point

• Project Leyden is looking at approaches that include those above as well as other ideas



Thank You.

Simon Ritter, Deputy CTO

@speakjava
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