
Instant Coffee: How To Eliminate 
Java Performance Warmup
Simon Ritter, Deputy CTO, Azul

Code. Cloud. Community.



2

JVM Performance Graph

Application
Warmup



3

JVM Performance Graph

First run Second run Third run



4

JVM Performance Graph

First run Second run Third run



5

Solution 1:
Ahead of Time (AOT) Compilation



6

Compile Java Source Direct to Native Code

• Traditional approach: Ahead of time, static compilation

• No interpreting bytecodes

• No analysis of hotspots

• No runtime compilation of code placing heavy load on CPUs

• Start at full speed, straight away

• This is the Graal native image approach

• Problem solved, right?



7

Not So Fast

• AOT is, by definition, static

• And code is compiled before it is run

• The compiler has no knowledge of how the code will actually run

o Profile guided optimisation has been around for a long time and only helps partially



8

Speculative Optimisation Example: 
Branch Analysis

int computeMagnitude(int value) {
  if (value > 9)
    bias = computeBias(value);
  else
    bias = 1;
  
  return Math.log10(bias + 99);
}

Profiling data shows that value (so far) has never been greater than 9



9

Speculative Optimisation Example: 
Branch Analysis

Assume that, based on profiling, value will continue to be less than 10

int computeMagnitude(int value) {
  if (value > 9)
    uncommonTrap();  // Deoptimise
  
  return 2;  // Math.log10(100)
}



10

JVM Performance

JIT Compiled Code

AOT Compiled Code
AOT Compiled Code with PGO



11

When To Use AOT

• Ephemeral microservices

o Startup and warmup time is more important than overall speed

o Garbage collection is usually a non-issue

• Resource constrained services

o E.g. 2 vcore container

o JIT compilation will significantly reduce throughput during warmup



12

Solution 2:
Store JIT Compilation Data



13

Azul Prime ReadyNow

• Run the application until its warmed up

• Take a profile

o All currently loaded classes

o All currently initialised classes

o JIT profiling data

o Deoptimisations that occurred

o A copy of all compiled code

• Restart application

o Load and initialise all required classes

o Load code or compile methods

o All before main()



14

ReadyNow Startup Time

P
e

rf
o

rm
a

n
c

e

Time

P
e

rf
o

rm
a

n
c

e

Time

Without ReadyNow!

With ReadyNow!

Class loading, initialising 
and compile time



15

Solution 3:
Decouple The JIT Compiler



16

JIT Compilation Has Cost

• JIT is CPU intensive

o The work has to be done concurrently with the application workload

• Better optimisations deliver better performance (throughput)

o But require more time, compute power and memory

• This is fine if we have a powerful machine

o E.g. 64 vcores and 64GB RAM

• Less powerful environments can be problematic

o E.g. 2vcore container with 2GB RAM

o Heavily optimised JIT can become prohibitive by degrading throughput

o Even resul in OOM errors

• Often we end up with a compromise



17

Speed and CPU Usage Over Time

• 2 Vcore container



18

Speed and CPU Usage Over Time

• 2 Vcore container



19

And Made It A Cloud-Based Resource

Cloud Native Compiler



20

Speed and CPU Usage Over Time

• 2 Vcore container



21

Speed and CPU Usage Over Time

• 2 Vcore container



22

Speed and CPU Usage Over Time

• 2 Vcore container



23

Isn't This Just Shifting The Cost?

• Well, Yes…

• But we are shifting it to a much more efficient place

• When a JVM optimizes locally, it must carry dedicated resources to do so

• When outsourced to a Cloud Native Compiler

o The resources are shared and reused

o The resources can be elastic

• Compiled code can be cached

o The JIT now effectively has a memory across runs



24

Solution 4:
Save The Whole Application State



25

Co-ordinated Resume In Userspace

• Linux project

• Basic idea

o Freeze a running application

- Pause program counter

o Create a snapshot of the applications state (as a set of files)

o At some later point, use those files to restart the application from the same point

- Potentially, on a different physical machine

Input Output

CPU

Memory

Registers



26

Co-ordinated Restore at Checkpoint (CRaC)

• Let's make the application aware it is being checkpointed and restored

• CRaC also enforces more restrictions on a checkpointed application

o No open files or sockets

o Checkpoint will be aborted if any are found

Application running Application running

Aware of checkpoint
being created

Aware of restore
happening



27

Using CRaC API

• Resource objects need to be registered with a Context so that they can receive notifications

• There is a global Context accessible via the static getGlobalContext() method of the Core class

<<Interface>>
Resource

beforeCheckpoint()
afterRestore()

Core

getGlobalContext()

<<Abstract>>
Context

register(Resource)



28

Does It Work? POC Results



29

Summary



30

Solving The JVM Warmup Problem

• No one solution will fit all situations

• AOT is good for fast startup/small footprint in ephemeral services

• ReadyNow provides memory of JIT across runs

• Cloud Native Compiler offloads JIT workload

• CRaC restarts an application from a known point

• Project Leyden is looking at approaches that include those above as well as other ideas



Thank You.

Simon Ritter, Deputy CTO

@speakjava


	Slide 1: Instant Coffee: How To Eliminate Java Performance Warmup
	Slide 2: JVM Performance Graph
	Slide 3: JVM Performance Graph
	Slide 4: JVM Performance Graph
	Slide 5: Solution 1: Ahead of Time (AOT) Compilation
	Slide 6: Compile Java Source Direct to Native Code
	Slide 7: Not So Fast
	Slide 8: Speculative Optimisation Example:  Branch Analysis
	Slide 9: Speculative Optimisation Example:  Branch Analysis
	Slide 10: JVM Performance
	Slide 11: When To Use AOT
	Slide 12: Solution 2: Store JIT Compilation Data
	Slide 13: Azul Prime ReadyNow
	Slide 14: ReadyNow Startup Time
	Slide 15: Solution 3: Decouple The JIT Compiler
	Slide 16: JIT Compilation Has Cost
	Slide 17: Speed and CPU Usage Over Time
	Slide 18: Speed and CPU Usage Over Time
	Slide 19: And Made It A Cloud-Based Resource
	Slide 20: Speed and CPU Usage Over Time
	Slide 21: Speed and CPU Usage Over Time
	Slide 22: Speed and CPU Usage Over Time
	Slide 23: Isn't This Just Shifting The Cost?
	Slide 24: Solution 4: Save The Whole Application State
	Slide 25: Co-ordinated Resume In Userspace
	Slide 26: Co-ordinated Restore at Checkpoint (CRaC)
	Slide 27: Using CRaC API
	Slide 28: Does It Work? POC Results
	Slide 29: Summary
	Slide 30: Solving The JVM Warmup Problem
	Slide 31

